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Soru 1: Neden hidrojen?



Soru 2: Hidrojende temel sorular ne?



Soru 3: Hidrojeni neden Uretelim?



Soru 4: Hidrojen en cok neyi tuketiyor?



/Zaten hidrojen bir cok asamada kullantliyor
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Notes: DRI = direct reduced iron steel production. Refining, ammonia and “other pure” represent demand for specific applications
that require hydrogen with only small levels of additives or contaminants tolerated. Methanol, DRI and “other mixed” represent
demand for applications that use hydrogen as part of a mixture of gases, such as synthesis gas, for fuel or feedstock.

Source: I[EA 2019. All rights reserved.

Around 70 MtH,/yr is used today in pure form, mostly for oil refining and ammonia manufacture for
fertilisers; a further 45 MtH, is used in industry without prior separation from other gases.

https://www.iea.org/reports/the-future-of-hydrogen



Hidrojeni destekleyen politikalar
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Note: Based on available data up to May 2019.

Source: IEA analysis and government surveys in collaboration with IEA Hydrogen Technology Collaboration Programme; IPHE
(2019), Country Updates.

https://www.iea.org/reports/the-future-of-hydrogen



Hidrojende ArGe calismalari
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Notes: Government spending includes European Commission funding, but does not include sub-national funding, which can be
significant in some countries. 2018e = estimated; RoW = rest of world.

Source: IEA (2018a), RD&D Statistics.

https://www.iea.org/reports/the-future-of-hydrogen



Hidrojen dretmenin bir cok yolu var
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Notes: N, = nitrogen. The dotted lines represent the flow of hydrogen-containing synthesis gas (mixture of hydrogen and carbon
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monoxide) from hydrocarbon fuels for further conversion into other synthetic hydrocarbons, such as coal-to-liquids or gas-to-liquids.

Though not discussed in this chapter, this direct conversion route of hydrocarbons via synthesis gas into other synthetic

hydrocarbons is likely more favourable in terms of emissions (especially when coupled with CCUS) or costs compared with producing

pure hydrogen from hydrocarbons first and then combining this hydrogen again with CO, for the production of synthetic

hydrocarbons, particularly if the CO, input is of fossil origin.

Source: IEA 2019. All rights reserved.

https://www.iea.org/reports/the-future-of-hydrogen



Hidrojeni dogal gazdan Uretme maliyetler:
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Notes: kgH, = kilogram of hydrogen; OPEX = operational expenditure. CAPEX in 2018: SMR without CCUS = USD 5oo—900 per
kilowatt hydrogen (kW,,), SMR with CCUS = USD 9o0-1 600/kW4,, with ranges due to regional differences. Gas price = USD 3-11 per
million British thermal units (MBtu) depending on the region. More information on the underlying assumptions is available at

www.iea.org/hydrogen201g.
Source: IEA 2019. All rights reserved.




Hidrojen maliyetlerinde iyilesme
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Hyrogen production cost (USD/kgH2)

Note: ‘Today’ captures best and average conditions. ‘Average’ signifies an investment of USD 770/kilowatt (kW), efficiency
of 65% (lower heating value - LHV), an electricity price of USD 53/MWAh, full load hours of 3200 (onshore wind), and a
weighted average cost of capital (WACC) of 10% (relatively high risk). ‘Best’ signifies investment of USD 130/kW, efficiency
of 76% (LHV), electricity price of USD 20/MWh, full load hours of 4200 (onshore wind), and a WACC of 6% (similar to
renewable electricity today).

Based on IRENA analysis

IRENA, 2019



Elektrolizor Teknolojiler;
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Based on IRENA analysis.
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Based on IRENA analysis.
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Degisik elektrolizorler
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Electrical
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Notes: LHV = lower heating value; m’/kW. = square metre per kilowatt electrical. No projections made for future operating pressure

and temperature or load range characteristics. For SOEC, electrical efficiency does not include the energy for steam generation.
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Notes: Based on a single stack size of 2 MW for alkaline electrolysis and 0.7 MW for PEM electrolysis.

Source: Based on analysis supported by Task 38 of the IEA Hydrogen Technology Collaboration Programme .
(2018), “State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price ¢
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Notes: MWh = megawatt hour. Based on an electrolyser efficiency of 69% (LHV) and a discount rate of 8%.

Source: [EA 2019. All rights reserved.



Cin'de hidrojen Uretim maliyetler:
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Notes: CAPEX of coal with CCUS = USD 1 475/kWy,. Renewable electricity costs = USD 30/MWh at 4 ooo full load hours. More
information on the underlying assumptions is available at www.iea.org/hydrogen201g.

Source: IEA 2019. All rights reserved.



Kapasite faktoru ve elektrik fiyatina gore
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Notes: More information on the underlying assumptions is available at www.iea.org/hydrogen2o01g.

Source: IEA 2019. All rights reserved.



Pipeline Ship Hydrogen conversion

Hidrojen zinciri
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Notes: Hydrogen transported by pipeline is gaseous; hydrogen transported by ship is liquefied. Costs include the cost of transport
and any storage that is required; costs of distribution and reconversion are not included. More information on the assumptions is
available at www.iea.org/hydrogen2019.
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Source: IEA 2019. All rights reserved.



Hidrojen karistirmada ulusal limitler
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* Higher limit for Germany applies if there are no CNG filling stations connected to the network; higher limit for the Netherlands
applies to high-calorific gas; higher limit for Lithuania applies when pipeline pressure is greater than 16 bar pressure.

Sources: Dolci et al. (2019), “Incentives and legal barriers for Power-to-Hydrogen pathways: An international snapshot”, International
Journal of Hydrogen; HyLaw (n.d.), Online Database; Staffell et al. (2019) "The role of hydrogen and fuel cells in the global energy
system”, Energy and Environmental Science.



Temiz hidrojen merdiveni

Unavoidable

-—

n“ Fertiliser || Hydrogenation || Methanol || Hydrocracking || Desulphurisation

Shipping* || Off-road vehicles || Steel || Chemical feedstock || Long-term storage

Long-haul aviation* || Coastal and river vessels || Remote trains || Vintage vehicles* | | Local CO2 remediation

Medium-haul aviation™ || Long distance trucks and coaches || High-temperature industrial heat

Short-haul aviation || Local ferries || Commercial heating || Island grids || Clean power imports || UPS

_“ Light aviation || Rural trains | | Regional trucks | | Mid/Low-temperature industrial heat | | Domestic heating

_‘\‘ Metro trains and buses || H2FC cars || Urban delivery || 2 and 3-wheelers || Bulk e-fuels || Power system balancing

Ur;competitive

* Via ammonia or e-fuel rather than H2 gas or liquid Source: Liebreich Associates (concept credit: Adrian Hiel/Energy Cities)



Karbon fiyatinin etkisi

United States European Union China

T 4
©
Q0
g
by 3
%)
-

2

- 74

1 7‘

0
0O 20 40 60 8 100 O 20= 40 60 80 100 0O 20 40 60 80 100
Carbon price (USD/tCO,) Carbon price (USD/tCO,) Carbon price (USD/tCO,)
—=Natural gas without CCUS —==Natural gas with CCUS

Notes: To show hydrogen costs in terms of theirimpact on refinery costs, 0.64, 0.63 and 1.04 kgH2/barrel are used for conversion for
the United States, European Union and China respectively. More detail on the assumptions available at www.iea.org/hydrogen2o1g.
Source: [EA 2019. All rights reserved.




Temiz hidrojen yol haritasi

2018 /el Viie  Energy and hydrogen requirements for ammonia and methanol production

Coal Gas Electricity Hydrogen
(Mtoe) (bcm) (TWh) (Mt)

Ammonia 175 Current @ - Q
: technology 132
Other primary
chemicals 378 Methanol 97

824 Mt/yr

NG w/CCUS

_ 6
Electrolysis ’

Notes: NG = natural gas; w/ = with. Best practice energy performance used for 2030 natural gas estimates. 2030 electrolyser
efficiency = 69% on an LHV basis. Demand figures for 2030 are consistent with those of the Clean Technology Scenario (IEA, 2018a),
a scenario in which the goals of the Paris Agreement are achieved, including the implementation of materials efficiency strategies.
Bubbles denoting energy and hydrogen requirements are sized on an LHV energy content basis. The hydrogen and energy quantities
are equivalent, and not additive.
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Source: I[EA 2019. All rights reserved.
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North America* 37 7.6 61% 55% pump pump
E Union* 29 72 43% 57% .
b sl ? ? Energy prices Energy performance Operational cost
Other advanced 13 49 339% 539
economies* ’ ? ? Notes: kWh-eq = kilowatt hour equivalent. Prices are residential prices, including taxes, in USD 2017 using purchasing power parities.
Russia* 5 10.7 35% 55% Source: I[EA 2019. All rights reserved.
China* 58 22 17% 50% o 5
C tit el

Indi 21 4 2% 17% Natural gas demand ompetitive price range Indicative hydrogen
neta > ’ ’ (Mtoe) pagtiveoges demand (MtH,)
Africa 21 03 10% 18% (USD/kgH>) 2
Latin America 12 1.0 27% 32% Canada 21 0.8-1.2 07-11
Other emerging
economies* 39 12 44% 31% United States 147 12-15 51-7.7
World 235 24 % 39% Western Europe 80 20-3.0 0.5-0.7
* Indicates markets with major heating demand as a share of total final energy consumption in the buildings sector. Russia = the
Russian Federation; China = the People’s Republic of China. Japan 14 2.0-35 04-0.6
Notes: m” = square metre. Excludes traditional use of solid biomass and does not include natural gas use in production of commercial
et Korea 11 0.9-1.9 2.8-4.2
Source: IEA 2019. All rights reserved.

Russia 43 15-18 15-2.2

China 51 12-14 18-2.7

Notes: Natural gas demand is for space heating and hot water production and takes account of building envelope improvements
under a Paris-compatible pathway. Indicative demand assumes that hydrogen production, transmission and distribution is within the
competitive range shown here and does not include potential hydrogen demand for hydrogen-based fuels. Excludes natural gas use
in production of commercial heat. Western Europe includes France, Germany, Italy and the United Kingdom. Indicative of direct
hydrogen use in buildings. The indicative demand takes into account typical lifetimes of existing heating equipment in buildings and
does not assume early retirement of equipment.

Chatirce: IEA ro1a All ricdhte recenved



rojen — elektrik sistemi
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Ulastirma
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Notes: Hydrogen station numbers include both publicly available and private refuelling units. The number of FCEVs used to estimate
the ratio includes only light-duty vehicles, and so does not reflect utilisation of stations by other categories of road vehicles.

Source: AFC TCP (2019), AFC TCP Survey on the Number of Fuel Cell Electric Vehicles, Hydrogen Refuelling Stations and Targets.
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Sanayi sektorinde isi talebi
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Source: IEA 2019. All rights reserved.



Demir celik sektérinde

Er: 75 100% é  Sensitivity of - Total crude steel production 2018 1809 Mt/yr Energy and hydrogen requirements for DRI-EAF
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Notes: The 100% gas-based DRI case is one in which the gas-based DRI route grows in line with current trends until 2030, with the

2050 figure showing the theoretical potential if all primary production took place via gas-based DRI. The Blending + demo in 2030, Notes: Only the energy and hydrogen requirements for the commercial coal/gas-based and 100% hydrogen-based DRI-EAF routes
100% hydrogen DRI in 2050 case is one in which the HYBRIT concept is demonstrated at scale (2.5 Mt/yr) by 2030, and 30% of the areincluded. Demand figures are consistent with a scenario in which the goals of the Paris Agreement are achieved, including the
feed to the remaining natural gas-based DRI-EAF capacity is substituted with an external hydrogen source. By 2050, the HYBRIT implementation of materials efficiency strategies and maximum deployment of the secondary production route. Average hydrogen
concept accounts for all primary production in this case. In the former case, the share of primary production and overall steel requirements for both the gas- and 100% hydrogen-based DRI-EAF routes are assumed in calculating the hydrogen requirements

production figures are from a context in which current trends are projected, whereas the latter is one in which action is taken to reach  and energy inputs. Bubbles denoting energy and hydrogen requirements are sized on an LHV energy content basis. The hydrogen
the goals of the Paris Agreement (greater deployment of the secondary route and uptake of materials efficiency strategies). Specific ~and energy quantities are equivalent, and not additive. 95% DRI charge to the EAF is assumed in all cases. Current DRI-EAF facilities
hydrogen requirement assumptions: gas-based DRI-EAF = 43 kgH./t of DRI; gas-based DRI-EAF with blending = 51-55 kgH./t of DRI,  often operate with a higher share of scrap, as this lowers costs. More information on the assumptions is available at

23 kg of which could be supplied externally; 100% hydrogen-based DRI-EAF = 47-68 kgH.,/t of DRI. 95% DRI charge to the EAF is www.iea.org/hydrogen201q.

assumed in all cases. Current DRI-EAF facilities often operate with a higher share of scrap, as this lowers costs. Source: IEA 2019. All rights reserved.

Source: [EA 2019. All rights reserved.



